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1  |  INTRODUC TION

Developing pharmacological interventions that slow down the aging 
process and consequently postpone the onset and progression of 
age- associated diseases is highly sought after. The aging process can 
be actively regulated by multiple interventions such as environmen-
tal, genetic, and pharmacological factors. Specifically, a large body of 
research has found that a reduction in caloric intake can extend lifes-
pan and delay disease onset in a wide range of species from nema-
todes to primates (Clancy et al., 2002; Colman et al., 2009; Fontana 
et al., 2010; Greer & Brunet, 2009; Mair & Dillin, 2008). A variety of 
heritable variants have been identified that to some extent mimic 
caloric restriction. For example, a Caenorhabditis elegans mutant for 
the insulin receptor daf- 2 can live two to three times longer than 

wild- type animals (Kenyon et al., 1993), and flies and mice that 
have mutations in the insulin or insulin- like growth factor- 1 recep-
tor gene similarly show an enhanced lifespan (Blüher et al., 2003; 
Holzenberger et al., 2003; Tatar et al., 2001). Drugs that affect hy-
pothesized metabolic pathways responsible for caloric restriction, 
such as rapamycin, metformin, and resveratrol, are being studied for 
their potential to enhance lifespan in several organisms from nem-
atodes to mice (Cabreiro et al., 2013; Harrison et al., 2009; Martin- 
Montalvo et al., 2013; Mouchiroud et al., 2010). Pharmacological 
interventions are currently the most practical strategy for affecting 
aging in humans, avoiding the technical and ethical problems with 
genetic interventions and the difficulty of maintaining an unpleas-
ant, life- long calorie- restricted diet. However, since the mechanisms 
driving the aging process are not well understood, there currently 
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Abstract
We present a novel platform for testing the effects of interventions on the life-  
and healthspan of a short- lived freshwater organism with complex behavior and 
physiology— the planktonic crustacean Daphnia magna. Within this platform, dozens of 
complex behavioral features of both routine motion and response to stimuli are con-
tinuously quantified over large synchronized cohorts via an automated phenotyping 
pipeline. We build predictive machine- learning models calibrated using chronological 
age and extrapolate onto phenotypic age. We further apply the model to estimate the 
phenotypic age under pharmacological perturbation. Our platform provides a scalable 
framework for drug screening and characterization in both life- long and instant assays 
as illustrated using a long- term dose- response profile of metformin and a short- term 
assay of well- studied substances such as caffeine and alcohol.
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exist few druggable targets for anti- aging treatments, and therefore, 
the evaluation of drug effects on the aging process requires the de-
velopment of new high- throughput screening platforms.

A key component of new high- throughput screening platforms 
will be identifying quantitative biomarkers of aging. Since individ-
uals may not age at the same rate, quantitative biomarkers of aging 
are valuable tools to measure phenotypic age, assess the extent of 
healthy aging, and potentially predict not only health and lifespan 
but also age- related outcomes for individuals within a population, 
even at an early age. Molecular biomarkers (often based on gene ex-
pression) are robust quantitative metrics and can reflect some of the 
molecular mechanisms underlying the aging process (Butler et al., 
2004; Xia et al., 2017), but often require sacrifice of the subject, 
laborious sample processing and constitute a single data endpoint. 
Phenotypic biomarkers can be harder to quantify but are fairly easy 
to obtain, non- invasive, and therefore are possible to repeatedly 
assay over the entire life of the subject and in future generations. In 
this regard, walking speed, the “chair stand test,” standing balance, 
and body mass index are well- known biomarkers of aging in humans 
(Xia et al., 2017). While these assays demonstrate the possibility of 
using phenotypic information as aging biomarkers, for obvious ethi-
cal and time considerations humans are an unsuitable model for the 
initial screening of chemical compounds or other interventions that 
may ameliorate age- associated phenotypic declines. Therefore, the 
development of novel model systems and their aging biomarkers will 
enable the discovery of potential anti- aging therapeutic strategies 
for humans.

The study of aging in a simple, short- lived model organism is ex-
tremely attractive. The small crustacean Daphnia (also called “water 
flea”) promises to be a powerful pharmacological model organism 
for several reasons: (a) it is a diploid, parthenogenetic species with 
a relatively short median lifespan (~50– 100 days, depending on en-
vironmental conditions) (Dudycha, 2003; Dudycha & Tessier, 1999; 
Kim et al., 2014; Robinson et al., 2012), (b) it has a short reproductive 
cycle (e.g., a female can produce a clutch of 1– 25 neonates every 
instar [Smirnov, 2017b]), and (c) its genome and complex body plan 
are significantly more homologous to humans than a common aging 
model worm C. elegans, thus allowing more human- relevant, tissue- 
specific manifestations of aging to be analyzed (Ebert, 2005). These 
properties of Daphnia allow short timeline experiments with a large 
sample size required for aging research, while their complex pheno-
types provide opportunities to build strong phenotype- based bio-
markers to assay the effects of drugs on the aging process. One of 
the most important parameters in drug development is the absorp-
tion, distribution, metabolism, excretion, and toxicity (ADME- Tox) 
of drugs. Daphnia allows the ease of perturbation by small mole-
cules compared to other short- lived invertebrate model organisms 
such as C. elegans and Drosophila, which have impermeable cuticles 
that form strong barriers to the absorption of drugs. Daphnia is a 
common model organism widely used in ecotoxicological testing 
(Bownik, 2017; Guilhermino et al., 2000): They display high permea-
bility and high sensitivity to compounds in their environment, which 
is an essential characteristic for drug screening (Flaherty & Dodson, 

2005; Guilhermino et al., 2000; Oliveira et al., 2016). Prior studies 
have demonstrated that the behavior of Daphnia is altered by chem-
icals, nanoparticles, pesticides, or bacteria products (Bownik, 2017), 
which allows for dose- dependent tests. In contrast, C. elegans and 
Drosophila are non- aquatic species, and therefore, it is difficult to ac-
curately profile dose dependence of pharmacological perturbations 
because of high individual variation in effective drug consumption. 
Thus, the short- lived, freshwater crustacean Daphnia offers a num-
ber of advantages over other common models of aging for screening 
of novel pharmacological agents.

Here, we introduce a unifying framework for evaluating the ef-
fectiveness of anti- aging interventions using Daphnia as a model or-
ganism and a machine- learning algorithm to build a predictive model 
with longitudinally tracked phenotypes. Specifically, we designed 
a scalable culture platform for longitudinal monitoring of Daphnia. 
With this platform, we tracked animals in a cohort of Daphnia until 
their natural deaths by developing a computer vision algorithm that 
quantitatively extracts a representation of the location and be-
havioral parameters of individual animals in the culture tanks. The 
machine- learning approach provides methodologies for the analy-
sis and practical use of the collected multi- dimensional phenotypic 
information, reaching meaningful biological conclusions. The major 
strength of machine learning is the potential to identify relevant pat-
terns within complex, nonlinear data without the need for any a priori 
mechanistic understanding of the underlying aging processes and to 
iteratively improve the predictive performance of models. We there-
fore used extracted features to train a supervised machine- learning 
algorithm to predict phenotypic age and compare to chronological 
age. We found that our predictive model was able to accurately 
estimate phenotypic age that might reflect animals’ health states. 
We then evaluated the robustness of our model in experimental 
conditions such as drug or chemical treatment and examined how 
much these perturbations affected the animals’ healthspan. The 
developed analysis pipeline allows for quick and efficient tests for 
potential pharmacological candidates that increase the healthspan. 
The high- throughput, scalable, automated approach presented here 
enables the extraction of new behavioral features and the training 
of the model to evaluate the effect of perturbations on behavioral 
outputs according to experimental purposes.

2  |  RESULTS

2.1  |  A scalable culture and high- throughput 
longitudinal phenotyping platform

We designed a platform to enable us to culture Daphnia at scale with 
high- throughput longitudinal phenotyping capabilities. While behav-
ioral monitoring platforms have been widely developed for model 
organisms such as mice, fly, and nematode (Churgin et al., 2017; 
Dankert et al., 2009; Hong et al., 2015; Le et al., 2020; Zhang et al., 
2016), these platforms are not suitable for aquatic animals. Several 
platforms for the behavioral study in either fish or Daphnia are 
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available but they do not meet our requirements. Most current 
Daphnia behavior tracking platforms have been designed for short- 
term experiments (e.g., a few minutes to hours) with a small number 
of animals (usually ~5– 10 animals per tank) for toxicological tests 
(Bownik, 2017; Kunze et al., 2016; Simão et al., 2019). Understanding 
the relationship between phenotypic changes and the aging process 
requires longitudinal monitoring with a large number of individuals 
because of the stochastic nature of aging processes.

A further complication in the long- term culture of Daphnia is the 
need to remove neonates. Since an adult female produces eggs every 
3– 4 days until death and neonates grow rapidly (Smirnov, 2017c), we 
should adequately separate neonates from mothers to maintain age- 
synchronized cohorts. However, this is still performed manually and 
is a labor- intensive and time- consuming task. To improve upon exist-
ing imaging systems for the long- term and a large number of animals, 
we engineered an integrated platform that provides (a) a long- term 
culture with a large sample size, (b) scalability provided by making 
an individual culture tank a module, and (c) controllability of stimuli 
for profiling behavioral responses of daphnids by implementing the 
mesh- based tank design and an integrated behavioral assay platform 
(Figure 1).

To easily separate neonates from mothers and to monitor ani-
mals’ phenotypes, we designed a tank which consists of three mod-
ules: a housing tank, an insert, and a cap with two different sizes of 
mesh (850 µm mesh at the bottom of the insert and 300 µm mesh at 
the bottom of the cap) (Figure S1a,c). To provide sufficient air to the 
daphnids, we created a continuous air- lift water flow through the 
two side columns which are separated from the insert tank where 
animals are housed (Figure S1a,b). Because of the continuous flow 
system, neonates are naturally passing through the large mesh at 
the bottom of the insert tank and get caught at the small mesh of 
the cap. Therefore, to separate neonates, we just need to remove 
and wash the cap. When we tested this platform, all 34 neonates 

were separated from the main tank within 5.5 min (Movie S1). The 
geometry of the tank is optimized for the 1L volume of media to 
culture a large number of animals (the size of a housing tank: 23 cm 
(w) × 20.5 cm (hr) × 4 cm (d)). Daphnids can swim freely in a rel-
atively large arena (the size of our insert is 16.5 cm (w) × 14.5 cm 
(hr) × 2.5 cm (d)). In addition, we can maintain and scale- up multiple 
different experimental conditions in a single experimental period 
(e.g., test different drugs, multiple drug concentrations, or food level 
at each tank depending on the experimental design and progress) 
because of the modularity of the system. It also represents truly in-
dependent replicates.

Behavioral impairment is one of the noticeable age- related 
changes observed across many species (Arey & Murphy, 2017), and 
so we wanted to include an assessment of this within our platform. 
Since light and vibration are stimuli well- known to induce behavioral 
responses in Daphnia (Smirnov, 2017a), it would be essential to ac-
curately control the light and/or vibration stimulus and monitor its 
responses with age to measure the effect of the perturbation on 
the behavioral performance. To allow precise temporal and strength 
control of stimuli and recording under the controlled environment, 
we developed an automated imaging setup (Figure 1b). All parts (e.g., 
camera, lighting, vibrational motor, and data organization) are inte-
grated and controlled via an Arduino board and a custom MATLAB 
GUI, which enables automatic experimental setup, controlling of 
stimulus intensity and timing, and monitoring of the phenotypic 
changes of the Daphnia as they age (Figures S2 and S3).

2.2  |  A computer vision algorithm for extracting 
quantitative phenotypes

To extract multiple behavioral features quantitatively, there is a need 
for a robust analysis pipeline. Even though there is commercially 

F I G U R E  1 Our	platform	enables	long-	term	culture	and	monitoring	of	daphnid	behaviors.	(a,b)	Schematic	illustrating	the	customized	
culture and imaging setup. (a) An individual tank. Air stones, connected to the air source, are located in two side columns to create an aerobic 
environment for daphnids and to separate neonates from mothers via two different sized meshes. (b) Schematic of imaging setup. A tank is 
set into the imaging setup and recorded via a frontal camera in a computer- controlled environment. An even backlight illumination is used 
constantly. A housing ceiling light is used for the stimulated phototaxis. The scaffolding ensures an invariant tank placement. Four vibrational 
motors on both sides of the scaffolding are used for the delivery of vibrational stimulus
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available software for Daphnia behavioral monitoring, it has been 
applied to a limited number of animals in a tank (~5 animals per tank) 
for a short period of time (a few minutes to hours) (Simão et al., 
2019). To process the data from our high animal- density experimen-
tal conditions, we developed a custom MATLAB script that extracts 
various behavioral and morphological features to track phenotypic 
changes during the aging process. Briefly, we performed background 
subtraction and image segmentation to identify and determine the 
location of live individuals (Figure 2a, Figure S4, and Note S2). Using 
a consensus approach informed by positional and morphological pa-
rameters, we separated the individual animals from other objects, 
such as dust or gunk, and performed tracking followed by measure-
ments of the behavioral features (Figure 2b).

When we considered which features can be extracted, we 
started with parameters that had previously been associated with 
toxicological testing (Bownik, 2017). For example, speed has been 
shown as one of the sensitive parameters in many Daphnia toxicol-
ogy tests (Bownik, 2017). The vertical movement in a phototaxis 
experimental condition can be another useful feature. Therefore, 
we monitored animals’ movement in two regimes, natural swim-
ming and stimulus- induced response, to examine age- related phe-
notypic changes in both cases. For example, the average swimming 
speed showed different patterns between these regimes. In the 
natural swimming mode (i.e., no external stimulus), we observed 
relatively consistent swimming speed. Yet, when animals were ex-
posed to additional light, they showed an obvious response: The 
average speed increased dramatically as animals moved up to-
ward the light (Figure 2c). Eventually, the speed stabilized at the 
level we observed prior to switching the light on. On the contrary, 
once the light was turned off, animals moved toward the bottom 
of the tank (Figure 2c,e, Figure S5, and Movie S2). Furthermore, 
our platform allows controlling the brightness of light (Strong light: 
2.65 ± 0.02 kLux and weak light: 0.75 ± 0.01 kLux). Therefore, we 
tested how daphnids responded to different strengths of light stim-
uli. Lastly, since vibration is known to evoke daphnids’ responses 
(Smirnov, 2017a), we monitored the animals’ responses to con-
trolled vibrational stimulus. Figure 2d shows the distribution of 
speed before and after each stimulus. Daphnia clearly responded 
to each stimulus and showed graded responses to the different 
strengths of light, which indicates that the controlled stimuli in our 
platform can induce daphnids’ behavioral responses.

Several studies in various model organisms have shown that 
morphological parameters such as muscle mass, body weight, and 
size are associated with lifespan or diseases (Ebert, 1991; Shimada 
& Mitchison, 2019; Swindell et al., 2008). Thus, we also extracted 
morphological features related to animals’ size (Figure 2f and Movie 
S3). Furthermore, we created a list of locomotor classifications such 
as “forward fast running (FwdRun),” “forward swimming (Fwd),” “for-
ward slow swimming (FwdSlow),” “turning (Turn),” “spinning (Spin),” 
and “pause” which involve basic locomotor actions of Daphnia. The 
analysis pipeline computed the per- frame probability of each loco-
motor description. Figure 2e shows that most of the time, young and 

healthy animals show forward swimming (either FwdRun or Fwd). 
The next- most common behavior was turning, in which Daphnia 
made a large, rapid change in orientation. But when the light stim-
ulus was delivered, most animals changed their behavioral status 
from either forward swimming or turning to forward fast running. 
It indicates that our descriptors of behavior are robust in reflect-
ing animals’ behavioral changes. In total, we extracted a set of 21 
quantitative features focused on natural swimming behaviors and 
12 additional features related to phototactic response (Table S1). 
To understand the relationship among extracted features, we cal-
culated the correlation matrix (Figure 2g). As expected, features in 
different categories are largely independent of each other, but ones 
in the same category (e.g., the forward movement features, turn-
ing features, pause mode, morphology- related features, and vertical 
location- related features) are more correlated.

Since we created a continuous flow for 24 hr to create air- driven 
circulation in the tank, except when we recorded the video, we 
tested whether this continuous flow itself alters the animals’ behav-
ior. There were no statistical differences between no- air and with- 
air flow conditions (Figure 2h) in both speed and angular velocity of 
the daphnids. This suggests that our continuous flow is nonrestric-
tive enough to not alter daphnids’ swimming patterns. Furthermore, 
to evaluate the performance of the automated algorithm, we seg-
mented the one minute video into four overlapping segments (e.g., 
30 s each: 0– 30, 10– 40, 20– 50, and 30– 60s, respectively) and com-
pared the results of processing of each fragment for the features 
including speed and angular velocity. We found that the replicated 
data are not significantly different among the fragments (Figure S6). 
It indicates that our algorithm was able to measure physiological fea-
tures in a robust, reproducible manner.

2.3  |  Highly controlled survival probability across 
replicates in the platform

The platform allows one to count the number of live animals for 
a survival assay, to build a lifespan curve, and ultimately to evalu-
ate the effect of perturbations on lifespan. However, the manual 
live/dead assay is a heavily labor- intensive task, and to our knowl-
edge, there is no available algorithm for a Daphnia lifespan assay. 
Therefore, an automated counter is required to build lifespan curves 
from our large- scale high- throughput longitudinal experiments. 
However, since animals often overlap or touch each other in the 
high- density population case, it is not easy to accurately segment 
and detect all individuals to count them. Since our algorithm could 
not count all live animals perfectly (e.g., count 75.62% of animals 
with 0.29% error [mislabeling]), we developed a hybrid “human- in- 
the loop” approach. A MATLAB GUI is used to manually curate the 
counts (Figure S7). Since more than 75% of animals are already auto-
matically and correctly counted, this pipeline makes counting much 
faster than an entirely manual approach and much more accurate 
than an entirely automated one.
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F I G U R E  2 Quantitative	behavioral	analysis.	(a)	A	workflow	of	the	behavior	tracking	and	predictive	model	building.	(b)	Two	sample	animal	
trajectories in a phototaxis experiment. (c) Examples of extracted speed in (i) normal and (ii) 30s light- stimulus conditions. The shaded light 
red box indicates the timing of a light stimulus. (d) Speed changes in response to various stimuli: weak light, strong light, and vibration (Day 
16; n = 424). (e) Descriptive behavioral features in 30s light- stimulus conditions (Red arrows indicate the timing of light on/off (10s to 40s); 
see Table S1 for details). (f) Example images of the animal for specific size extraction. Using circularity as a criterion, we distinguished the size 
of the transverse and sagittal planes (See methods for details). (g) The correlation matrix of features, extracted from the natural swimming 
conditions (Using all longitudinally recorded videos). (h) Comparison of two quantitative features, speed and angular velocity, between no air 
and continuous airflow conditions with the same animals at the same age (n = 67). Statistical analysis: Mann– Whitney test (*<0.05, **<0.01, 
***<0.001, ****<0.0001)
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Reproducibility in the new platform is one of the critical fac-
tors in finding robust age- related biomarkers and then conducting 
phenotypic screens for pharmacological interventions that promote 
healthy aging. We tested whether three independent cohorts could 
show reproducible lifespan curves. Figure 3a shows that reproduc-
ibility between cohort experiments is high (e.g., no statistical dif-
ference with the log- rank test; median lifespan: cohort 1 = Day 53, 
cohort 2 = Day 52, and cohort 3 = Day 57). Not surprisingly, in-
dividual trial reproducibility is relatively low (Figure S8a). It serves 
to inform us that the general health of the natural variants is well 
controlled in our platform if the size of the sample is large enough (> 
90 animals per cohort). It indicates the feasibility of the platform to 
test age- related interventions.

The comparison between survival curves obtained in replicate 
cohorts in the new platform to those obtained by us using the same 
Daphnia magna clone in comparable conditions but under the stan-
dard lifetable protocols (Figure S8b) reveals that the new platform 
increases cohorts’ lifespan. Furthermore, we conducted the para-
metric modeling by fitting generalized gamma, Weibull, Gamma, 
Exponential, Log- logistic, Log- normal, and Gompertz models to our 
data and to several standard protocol studies conducted using the 
same Daphnia magna genotype. The assay reveals that generalized 
gamma distribution shows the best fit to the data in most cases, fol-
lowed by Gompertz distribution (standard protocol) or Log- logistic 
distribution (our platform) (Figure S8c,d). Lastly, a comparison with 
median lifespan estimates obtained by different laboratories using 

different Daphnia magna genotypes and implementing a variety of 
traditional lifetable protocols reveals a remarkable reproducibility of 
the data generated by our platform (Note S4).

2.4  |  Age- related phenotypic changes

Age in animals is accompanied by a decline in locomotion and de-
creased responses to various stimuli, which are direct measures of 
healthspan (Herndon et al., 2002). We therefore assessed motility 
and responses to controlled stimuli over the entire adult lifespan of 
animals. As expected, the average swimming speed decreased with 
age, while body size increased at the population level (Figure 3b). 
Behavioral features display variation at the individual level (e.g., the 
same animal did not show the exact same behavioral performance on 
the task), but the population- based average value shows the trend of 
age- related changes. It is known that Daphnia, like most other crus-
taceans, continues to grow their entire life (Smirnov, 2017c). As we 
mentioned, both light and mechanical stimuli can induce Daphnia re-
sponses. Thus, we set out to quantify this effect using the speed pa-
rameter. Figure 3d shows the change of speed before and after the 
three different stimuli over the lifetime (we selected four timepoints: 
young age (Day 20), the median of lifespan curve (Day 54), 90th per-
centile of the lifespan curve (Day 71), and very old age (Day 80)). 
When animals are young (Figure 3d i and ii), they significantly re-
spond to all three types of stimuli, even though strong light induces 

F I G U R E  3 Age-	related	phenotypic	changes.	(a)	Lifespan	curves	for	three	control	experiments	(Cohort	1:	n = 184, Cohort 2: n = 88, and 
Cohort 3: n = 152). (b) A lifetime population average of speed (blue) and body size (red) of daphnids in a control experiment (n = 424). Error 
bars are SEM. (c) Density plot of speed at three ages: young (blue— 20th percentile; n = 346), median (red— 54 day old; n = 217), and mature 
(green— 80th percentile of the lifespan; n = 96), (d) Response to stimuli (weak light, strong light, and vibration) speed before (blue) vs after 
stimulus (orange) at four ages (i: young, n = 423, ii: median, n = 217, iii: mature, n = 56, and iv: old, n = 20). Two- tailed t test (** p- value <0.01, 
**** p- value <0.0001)
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faster movement than weak light. When animals get older, the dis-
tributions of speed for both before and after stimuli are gradually 
decreased. Specifically, at age Day 71, animals still clearly respond 
to both light stimuli, but vibrational stimulation does not induce sig-
nificant responses (Figure 3d iii). At old age (Day 80), animals do not 
show significant responses (Figure 3d iv). This establishes that our 
platform is sufficiently sensitive to capture the change of animals’ 
behaviors with age.

2.5  |  The effect of metformin treatment on 
both the lifespan and phenotypic features

We next asked how pharmacological perturbations influence lifes-
pan and behavioral decline during the aging process. While several 
potential anti- aging drugs have been suggested in various model 
organisms, they have not been well tested in Daphnia. As a proof 
of concept of the suitability of the developed model for the meas-
urement of phenotypic age in perturbed conditions, we used one 
of the well- known anti- aging drugs, metformin, in Daphnia magna. 
Metformin is a drug commonly prescribed to treat patients with 
type 2 diabetes, and several studies suggest that metformin can in-
crease the lifespan of various model organisms (Barzilai et al., 2016; 
Cabreiro et al., 2013; Martin- Montalvo et al., 2013), although non- 
significant effects of metformin on lifespan have also been observed 
(DrugAge database (Barardo et al., 2017)).

We first determined the long- term effects of four doses of met-
formin in female daphnids (1 mM, 1, 0.1, and 0.01 µM). The age 
when drug treatment is started may also be an important variable 
to consider. Since, in mice, early life metformin treatment can ex-
tend mean lifespan while late- life treatment failed to increase lifes-
pan (Anisimov et al., 2011), we started to apply metformin when 
animals were transferred to our culture platform after they were 
fully developed (Days 12– 13, when they start to produce proge-
nies). Unsurprisingly, we observed a significant decrease in lifespan 
for daphnids cultured at a high dosage of metformin compared to 
those at the lower concentrations or the control condition (all ani-
mals were dead within 2 days in the toxically high 1 mM metformin 
concentration), following known trends in other model organisms 
(Martin- Montalvo et al., 2013) (Figure 4a). 1 µM metformin is also 
toxic and significantly shortens the median lifespan of female daph-
nids by 14.5% (χ2 = 20.42 and p- value <0.0001 in log- rank test). 
However, the significantly shifted lifespan at the low concentrations 
of metformin is not observed (Control vs. 0.1 µM: χ2 = 1.078 and p- 
value = 0.297/Control vs. 0.01 µM: χ2 = 2.092 and p- value = 0.148 
in log- rank test).

To investigate whether behaviors and morphological features 
are impacted by metformin treatment, we first plot the changes in 
body size and speed against age with the result of the control group 
(Figure 4b,c). Interestingly, the body size of animals treated with 
0.01 µM is smaller than the control one over almost the entire lifes-
pan (Figure 4d). In mice, metformin- treated males weighed less than 

control animals (Martin- Montalvo et al., 2013). In 1 and 0.01 µM, the 
movement in the non- stimulated condition is slower than in control 
animals until the median age (Figure 4e). Based on the lifespan assay, 
1 µM dose is toxic, likely causing the slowing of swimming speed. 
1 µM metformin- treated animals also show reduced responses to 
external stimuli (Figure 4f– h). On the contrary, the reduced speed 
of 0.01 µM- treated animals might be caused by small body size. In 
a steady environment, smaller animals move slower, but when re-
sponding to stimuli they might be able to react more actively be-
cause of the effect of the drug (Figure 4f– h).

2.6  |  Quantitative behavioral metrics can estimate 
phenotypic ages using machine learning

We sought to determine the degree to which individual features 
correlate with chronological age. We performed a simple linear re-
gression on each feature for the measured age and evaluated its 
performance. The major axis parameter shows the best correlation 
with age, followed by sagittal plane body size (Table S2). While sev-
eral single parameters were somewhat correlated with chronological 
age, we can expect that we could build a more accurate predictive 
model using combined extracted features as input.

With the ability to extract multiple quantitative behavioral 
features, we asked whether these could be compiled into a single 
predictive model to estimate the phenotypic ages of individuals 
using the integration of phenotypic parameters as input features 
and chronological age as output labels. We built models using five 
types of machine- learning models— LASSO (least absolute shrink-
age and selection operator) (Tibshirani, 1996), Elastic Net, Random 
Forest (Breiman, 2001), Gradient Boosting (Friedman, 2001), and 
SVM (Support Vector Machine) (Cortes & Vapnik, 1995)— and 
quantified the extent to which the model fitted the data in both 
natural (i.e., no external stimulus) and stimuli- induced conditions 
(Table S3). As expected, the multivariate models show better pre-
dictive performance than the univariate one, with lower error and a 
higher r- squared value. Particularly, the Gradient Boost model had 
the best accuracy with the highest r- squared value and lower mean 
error than other models for both natural swimming and stimulus- 
induced experimental data (Figure 5a,b and Figure S9). A decision 
tree- based random forest approach also shows very similar per-
formance as Gradient Boost. This could be because tree- based 
ensemble models such as Random Forest and gradient boosting 
can represent complex interactions among features, which linear 
regressions, such as LASSO and Elastic Net, cannot do (Breiman, 
2001). Unsurprisingly, the model built using stimulus- induced phe-
notypic features shows better predictive performance than the 
one using natural swimming conditions. This can be attributed to 
the stimulus- induced behavior being more reflective of age- related 
performance, and possibly to the fact that we use more features 
to represent the stimulus- induced swimming dataset (Figure 5d,e 
and Table S3).
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One of the benefits of the gradient boost method, in addition to 
a highly predictive model, is that we can rank relevant features using 
the permutation feature importance analysis, that is, by calculating 
the incremental error resulting from the feature being excluded from 
the model (Figure 5c,f). As the result of a simple linear regression for 

the individual feature shown, size- related features were identified as 
the important features, followed by the speed feature. Interestingly, 
the lists of important features of the models are different based 
on the experimental conditions (natural vs. stimulus swimming). 
Specifically, features indicating the responsiveness to the stimulus 

F I G U R E  4 Behavioral	changes	and	longevity	in	metformin-	treated	animals.	(a)	Survival	curves	(Control:	n = 424, Met 1 mM: n = 50, 
Met 1 μM: n = 90, Met 0.1 μM: n = 138, Met 0.01 μM: n = 89), (b) average body size and (c) average speed in the non- stimulated condition 
(sample size of each condition is the same as in (a); SEM error bars), (d) Body size and (e) Speed at different ages. (f– h) Response to 
stimuli (weak and strong light, vibration) at different ages. All tests compared to control via two- tailed t test, *<0.05, **<0.01, ***<0.001, 
****<0.0001. (Day 40: n = 393, Day 54: n = 217, Day 68: n = 67)
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(speed or y- directional velocity) come out as important in the stim-
ulus swimming compared to natural swimming. It might imply that 
parameters showing behavioral performance are highly related to 
the health status of animals.

The predictive accuracy of our established model suggests that 
it may be useful for evaluating the lifespan effects of multiple in-
terventions in Daphnia many days before their death. Specifically, 

we hypothesized that the difference between predicted age and 
chronological age might be representative of phenotypic age, where 
healthier animals would be estimated to be younger than their 
chronological age. To test this idea, we calculated this difference in 
metformin- treated animals using the predictive models (e.g., using 
both models built by normal condition data and stimulus condition 
data) (Figure 5g,h). Both models estimated the age of low (0.1 and 

F I G U R E  5 Predictive	model	using	Gradient	Boost.	(a–	f)	The	model	built	by	Gradient	Boosting	predicts	ages	from	(a,	d)	training	and	(b,	e)	
testing data sets (a, b) the natural (12k individual trajectories) and (d, e) stimulus- induced condition (16k individual trajectories). The diagonal 
blue line indicates a theoretically perfect prediction. (See Table S3 for the accuracy test). (c, f) Importance of the top 10 features derived 
by Gradient Boosting for (c) the natural and (f) stimulus- induced condition (See Table S3 for the definition of features). (g, h) Comparing 
predicted age vs chronological age for control and metformin- treated animals using the model developed by the natural condition (g: natural 
and h: stimulus- induced condition). Error bars are SEM. (i) Comparing predicted age vs. chronological age (Day 20) for control and 5mM 
metformin- treated animals in every hour recorded stimulus- induced phenotypes (control: n = 22 and 5 mM: n = 19)
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0.01 µM) metformin concentration- treated animals to be smaller 
than that of control animals. On the contrary, 1 µM metformin- 
treated animals’ predicted ages are usually higher than the control 
one. If we calculated the slope of the simple linear regression (forced 
x-  and y- intercepts are zero), the control group shows almost one 
(0.9639 ± 0.0005 by natural condition and 0.9833 ± 0.0007 by stim-
ulus condition) (Table S4). However, the low concentrations of met-
formin treatments show smaller slope values than the control one. 
On the contrary, a high concentration of metformin shows slope 
values larger than 1, which indicates that the rate of the aging pro-
cess is differently estimated in our model. With the important fea-
tures for the models, we can assume that lower behavioral activity 
in 1 µM contributes to the old phenotypic ages by both models (e.g., 
no significant size difference between control and 1 µM condition 
[Figure 4d]). In the lower concentrations, both smaller body sizes and 
behavioral responses may contribute to the younger phenotypic age 
in both cases. It demonstrated that we can use the predictive model 
to estimate animals’ phenotypic age.

Furthermore, this model allows us to quantitatively evaluate the 
toxicity of drugs at an early time point. Figure 5i shows the pheno-
typic age of both control and 5 mM metformin- treated animals. In 
this experiment, we monitored animals’ phenotypes every hour in 
both groups in the stimulated motion conditions and then estimated 
the phenotypic age. All animals in the 5 mM treated group died 
within 1.5 days. Even a few hours later, the predicted age of 5 mM 
metformin- treated animals is higher than the control one. Then, the 
difference of estimated age is getting larger. It opens up the possi-
bility that our model may be used to test the toxicity of drugs on 
animals’ health within a few hours.

2.7  |  Estimated phenotypic ages in various 
perturbed conditions

The key application of our predictive model is to quantify the health 
of individuals at an early age to test the effects of interventions that 
perturb animals’ lifespan and healthspan. This avoids the need for 
monitoring phenotypic changes over the entire lifespan to evalu-
ate the efficacy of drugs. To validate this idea, we tested several 
chemicals and quantified their using our model. Various studies 
have reported the effect of chemicals on Daphnia physiology, such 
as movement or heart rate in a short time period. Among them, 
ethanol was reported to reduce the heart rate of Daphnia (Corotto 
et al., 2010). When we treated daphnids with 1%– 4% ethanol, the 
behavior changed dramatically within minutes (Figure 6a– c). For 
example, within 5 min of 3% ethanol treatment, animals’ speed 
sharply decreased (Figure 6c and Video S4). When phenotypic age 
was calculated for these ethanol- treated animals, they appeared to 
be older than the control animals (e.g., control: 16.29 ± 0.89 days, 
3% EtOH 5min: 18.05 ± 0.57 days, p- value <0.001). On the con-
trary, caffeine was reported to increase the heart rate of Daphnia 
(Corotto et al., 2010; Kundu & Singh, 2018). Interestingly, our model 
indicates that the 0.8mM caffeine- treated animals appear younger 

than the controls, which is statistically significant (p- value <0.01) 
(Figure 6d). To further evaluate our model, we tested solutions of 
Ficoll, which makes higher viscosity of culture media. Since aquatic 
animals swim slowly in high viscous media, it is expected that 
animals’ behavior in Ficoll- mixed media is inhibited compared to 
standard ADaM culture. Naturally, our model estimated the much 
older phenotypic ages for these animals than the control animals 
(Figure 6e) and reflected the progressive change with the concen-
tration of Ficoll. Lastly, we tested fluoxetine which has been re-
ported to make a slight change in phototactic responses on Daphnia 
(Simão et al., 2019). However, in our analysis, even though the phe-
notypic age in the phototaxis case is estimated older than the con-
trol one, it did not show any significant changes in both natural and 
phototaxis conditions (Figure 6f).

Furthermore, we used smaller sizes of the tank for the short- term 
chemical tests to examine the possibility of reducing the quantity 
of chemicals and drugs required and the overall cost of the screen. 
Specifically, we used the original size of the tank (1L volume) for 
fluoxetine, a medium size of the tank (400ml volume) for ethanol 
and Ficoll, and the small size of the tank (100ml volume) for caffeine 
(Figure S9). In all cases, the estimated ages for control are very sim-
ilar to their chronological ages (Figure 6b,d– f). It indicates that our 
framework is not specific for a particular design of the experiment. 
It can be more widely applicable for various shapes of culture tanks 
depending on the experimental purposes. In conclusion, these test 
results indicate that our model can predict how old individual ani-
mals appear to be and it is sensitive enough to distinguish the effect 
of various interventions on the health of animals.

3  |  DISCUSSION

Our new platform for lifespan experiments with Daphnia cohorts 
allows scalable, low maintenance, semi- automatic measurements of 
lifespan and age- related changes in this emerging model organism. 
The platform has a unique environment, which differs from tradi-
tional lifetable assays. While traditional assays culture animals in a 
static water condition, in our platform animals are grown in air- driven 
circulation with a mesh bottom (i.e., animals are not in contact with 
food or any byproduct accumulating at the bottom). Furthermore, 
while traditional assays involve manual manipulation of animals for 
water changes and counting, no such manipulation (mechanical dis-
turbance) is required in our platform. It is currently impossible to 
establish precise causes of substantial lifespan differences across 
culture condition (Lucanic et al., 2017). What is clear is that there is 
much less room for human error in handling and substantial gain in 
scalability (See Note S5) which leads to highly reproducible lifespan 
curves— a necessary condition for confident evaluation of lifespan 
interventions.

In addition to lifespan measurements, it is desirable to have 
quantitative phenotypic biomarkers for the aging process which 
allow for measuring the health status of animals. This would be 
essential in the development of new anti- aging pharmacological 
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strategies. The discovery of such pharmacological interventions in 
aging requires high- throughput screening strategies. However, the 
majority of screens performed in model organisms so far are rather 
low throughputs with only live/dead assays. Given the complexity 
of the aging process, the aging biomarkers would be multifaceted, 
not a single feature. Therefore, measuring various features longitu-
dinally in a high- throughput manner is a key to establish the mean-
ingful metrics of biomarkers for the aging process and successfully 

transfer pharmacological approaches to the clinic. For Daphnia, al-
though several systems for monitoring behaviors exist, most of them 
are dedicated to measuring 1– 2 features in a short period of time. 
In this study, we demonstrated an integrated platform that allows 
for the longitudinal culturing and monitoring of Daphnia phenotypic 
changes with minimal experimenters’ efforts in a high- throughput 
manner. The platform's inherent modularity can accommodate vari-
ous experimental conditions at the same time. With our customized 

F I G U R E  6 Estimated	phenotypic	ages	in	various	interventions	in	young	adult	daphnids.	The	red	dash	line	indicates	the	chronological	
age. Mann– Whitney test (p- value: * <0.05; ** <0.01, and *** <0.001). Error bars are SEM. (a– c) The effect of ethanol treatment (n = 5 for 
each condition). (a) Speed changes on ethanol, (b) Predicted (Phenotypic) age. The chronological age of the tested animals is indicated by the 
red dash line. (c) The probability of descriptive behavioral features after 3% ethanol treatment (i: 0– 1 min, ii: 4– 5 min, and iii: summary). (d) 
caffeine (n = 3 for each condition), (e) Ficoll (n = 5 for each condition), and (f) Fluoxetine (n = 11)
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software, we can extract a variety of behavioral and morphological 
features systematically. Thus, our automated platform and anal-
ysis pipeline provides high- content phenotypic measurements of 
Daphnia.

We set out to perturb Daphnia pharmacologically with a known 
anti- aging drug and see if we could observe phenotypic changes 
using our platform. We monitored age- related phenotypic changes 
and lifespan in control and metformin- treated animals until their 
natural deaths. We found that Daphnia shows a shift in its lifespan 
curves depending on metformin dosage, suggesting that Daphnia is 
sensitive in a dose- dependent manner to drugs. We also observed 
that various behavioral features declined during the aging process, 
as in other model organisms (Le et al., 2020; Martin- Montalvo et al., 
2013). This observation indicates that our platform and pipeline can 
establish the areas in which Daphnia can complement existing mod-
els through improvements in sensitivity, cost, or efficiency for aging 
research and phenotypic screening for anti- aging drug discovery.

Having established that Daphnia lifespan is sensitive to pharma-
cological perturbation, we next attempted to build a model of the 
phenotypic clock from an ensemble of quantitatively extracted fea-
tures. We demonstrated the feasibility of this clock by examining 
phenotypic changes across different chemical perturbations on a 
short- term scale (a few minutes to 1 day). Then, the use of our pre-
dictive model can quickly evaluate the effect of these chemicals on 
the aging process. It suggested that the integration of phenotypic 
features enables the construction of an estimator for phenotypic 
ages to explore the relationship between perturbations and the 
aging process. Note that while such phenotypic traits as velocity and 
body size change with age, they should not be always interpreted as 
biomarkers of lifespan or healthspan. A drug that causes animals to 
appear younger that way might reduce the lifespan or harm animals’ 
health. Thus being “younger” in terms of modeled phenotypic age 
only implies a reference to respective biological age in control popu-
lations, rather than an assertion of a longer healthier life.

Notably, the performance of the predictive model can be im-
proved. First of all, we can improve the accuracy of the tracking algo-
rithm using convolutional neural networks instead of the conventional 
image process technique that we used here. Because of the overlap-
ping of animals in a high- density population, our current algorithm 
could not track all animals properly during entire recorded frames. A 
convolutional neural network may provide a better solution for ob-
ject segmentation and tracking problem. Second, the predictive accu-
racy could be improved by adding more sample numbers, especially 
at the older ages, because we have a smaller number of trajectories 
in old ages compared to the younger ages. Lastly, the model could 
get an advantage from the incorporation of additional input features. 
Specifically, by measuring performance on additional behavioral tasks 
in our platform, such as chemosensation in Daphnia (Smirnov, 2017a), 
we would deeply understand the functional correlates of behavioral 
changes with normal aging and predict future behavioral impairment.

The major limitation of phenotypic- based screens is that the 
mechanism of action of drugs is unknown and there is a possibility 
to have false positives due to compounds that target mechanisms 

that could affect the assayed phenotype but are not specific enough 
to be used as drugs. This limitation would be overcome in combi-
nation with innovative approaches to genome, transcriptome, 
proteome, fluorescent markers, or molecular reporters. By adding 
multifaceted information, we can investigate integrative biology at 
high resolution across multiple organ systems, cellular, and genome 
levels at multiple time points during the aging process. Specifically, 
the transparent body of Daphnia makes real- time observation of its 
cell biology and physiology straightforward. With this observation, 
we can understand how particular organs or systems fail with age. 
For example, we observed the decreased swimming ability with age 
that might indicate the degradation of muscle and the decreased 
performance in phototaxis with age that might indicate the defects 
in cognitive ability. By measuring muscle loss and detecting dam-
age in neuron number, synaptic integrity, and neurotransmitter, we 
will find the causality factor for the age- related phenotypic decline. 
Thus, using those high- dimensional multifaceted data to construct 
dynamic networks that will provide a better understanding of what 
extent individuals’ age differently and enable assessment of poten-
tial interventions by providing a more information- rich readout.

Using a short- lived model organism, an automated video mon-
itoring platform and phenotypic profiling pipeline, and machine- 
learning algorithms, we show the possibility of that the non- invasive 
phenotypic measures could be used in perturbational studies to 
understand whether a perturbed condition is effective to delay 
aging at an earlier than its death. In theory, our approach could be 
adapted to predict phenotypic age for other model organisms. The 
ability to predict the health status of animals enables us to conduct 
rapid screens for anti- aging drugs. We envision that our framework 
can greatly expand the repertoire of not only high- throughput be-
havioral measurements but also deep pharmacological profiling in 
Daphnia. As future work, it is capable of high- throughput screen-
ing large libraries of small molecules for their effects on particular 
traits of interest, such as extension of healthspan and/or lifespan. 
Specifically, we can re- examine drugs from the “DrugAge” database, 
which compiles results on lifespan effects from >500 distinct com-
pounds in more than 20 species (Barardo et al., 2017). Since very few 
drugs are tested across multiple species, having most of these com-
pounds profiled in the same organisms during the aging process will 
create the benchmark for the development of pharmacological strat-
egies that extend the period of healthy life and eventually prevent 
or reduce the onset of age- related phenotypic changes or diseases.

4  |  METHODS

4.1  |  Population culture

Daphnia magna animals were used in all assays. An IL- MI- 8 heat- 
tolerant clone was obtained from the Ebert laboratory at the 
University of Basel, Switzerland stock collection originating from a 
pond in Jerusalem, Israel. To collect synchronized cohorts, neonates 
born within 1– 2 days were separated from the mothers and their sex 
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was determined at Days 8– 10. We used a large range of maternal age 
from Day 11 to Day 90. All mothers are also well- fed and cultured at 
the same conditions (25°C incubator). We used females for all exper-
iments in this study to avoid sex- dependent differences. Collected 
females were cultured until when animals start to give birth to neo-
nates (approximately Days 9– 11 at 25°C), and then, 40– 50 animals 
were randomly assigned to one of our developed culture tanks. All 
cultures (e.g., mother, neonates, and tank cultures) were maintained 
in ADaM water (Klüttgen et al., 1994) at the 25°C incubator, ex-
posed to a light cycle of 16 light hours followed by 8 dark hours, and 
fed every other day the suspension of the green alga, Scenedesmus 
obliquus, at a concentration of 1×105 cells/ml (for 1 animal/20ml 
density, amount of food prorated by population). Every fourth day, 
the water was changed and offspring were removed manually until 
animals were transferred to the culture platform. The airflow in the 
tank was regulated by a pressure gauge. The operating range of pres-
sure was 1– 1.5 psi depending on the number of connected tanks.

4.2  |  Imaging tank fabrication

A custom- designed transparent tank for Daphnia was made from 
acrylic sheets (McMaster- Carr, USA). A single tank setup consists of 
three pieces: a housing tank, an insert, and a cap (Figure S1). Based 
on the dimension of the tanks, acrylic sheets were cut using a laser 
cutter. The cut pieces were bonded by acrylic cement (SCIGRIP 16, 
USA). The housing tank is partitioned into three parts as follows: 
two side columns were used for air generation, and the middle part 
for the insert was used for recording. The bottom of the insert was 
made from an 850 µm mesh to separate progeny from their mothers. 
The bottom of the cap was made from a 300 µm mesh to prevent the 
progeny from getting into the insert.

4.3  |  Video acquisition and stimuli control

The recording was made at a rate of 25 fps using a 1.3 Megapixel 
monochrome CMOS camera (DCC3240M, Thorlabs) coupled with 
an optical lens (MVL8M23, Thorlabs). For the longitudinal track-
ing data, the video was recorded every day until all animals died. 
A white LED background light (LightPad 930, ArtoGraph) was pro-
vided to create an even illumination into the entire tank and a white 
LED strip was used for light stimulus. Using the neutral density fil-
ter, we minimize the intensity of the backlight (0.16 ± 0.01 kLux). 
To record the video, we moved the tank to the imaging setup and 
turned off airflow to create static conditions. The animals were 
then left to acclimate for 2– 3 min with the backlight before the 
actual recording began. We filmed two videos: (a) 1 min video to 
capture natural swimming behavior and (c) 2 min video to moni-
tor behavioral responses to controlled stimuli (weak light stimulus: 
20– 30 s; strong light stimulus: 40– 50 s; and vibrational stimulus: 
70– 80 s). All videos were stored using unique file names identifying 

the cohort, recording time and the experimental condition. The fol-
lowing two recording regimes were used: (a) natural swimming with 
no extra light stimulus and (b) stimuli- induced swimming (each stim-
ulus was delivered for 10s and used 10 or 20s as the interstimulus 
interval). The intensity of strong light stimulus at the top of the tank 
was 2.65 ± 0.02 kLux and the one at the bottom of the tank was 
0.32 ± 0.01 kLux. The intensity of weak light stimulus at the top of 
the tank was 0.75 ± 0.01 kLux and one at the bottom of the tank 
was 0.10 ± 0.01 kLux. The strong light stimulus is approximately 
three times brighter than the weak light stimulus. The tank was first 
covered by a dark housing box (Figure 1c) to control the amount of 
stimulus light accurately by minimizing the effect of ambient light 
and also to induce animals to assemble at the bottom of the tank as 
the baseline before the light stimulus.

4.4  |  Animal detection and tracking

We performed background subtraction and image segmentation 
to determine the location and identity of animals. Specifically, the 
background was calculated as the average of every 25th frame (25 
fps) and subtracted from each frame to remove all stationary objects 
(e.g., corpses and dust). We then segmented moving objects to de-
termine the potential boundary of the animals, and the identities of 
the animals were determined by a consensus informed by positional 
and morphological parameters. All segmented animals in each frame 
were parameterized by the centroid position, size, and major-  and 
minor- axis length. The two body size features of Daphnia (e.g., body 
size of transverse vs. sagittal plane) were determined by the circular-
ity of segmented Daphnia: Circularityobject = 4�A∕P2, where A is the 
area and P is the perimeter. Here, the size of the transverse plane was 
classified when the normalized circularity value was larger than 0.92 
and the size of the sagittal plane was classified when the normalized 
circularity value was smaller than 0.58. These thresholds were em-
pirically selected. If the animals were tracked for less than 10 s, we 
did not consider it a trajectory (it is possible that a single animal can 
produce multiple trajectories). The moving average method (using a 
3 timepoint window) was used for the time series data (Figures 3b, 
4b,c and 5g– i). Although the control of lifespan assay was recorded 
almost every day (at old ages, we recorded videos every other day), 
the metformin treatment conditions were usually recorded every 
other day. Thus, we used ±1 day time window for Figure 3d iv and 
4d– h, if necessary.

The code is available in GitHub. (Platform control GUI: https://
github.com/dydal s320/Imagi ngGUI). Behavior tracking and analysis 
code: https://github.com/dydal s320/Daphn iaBeh Analysis.

4.5  |  Predictive model

Longitudinal tracking data are intrinsically imbalanced throughout 
lifespan because of the death of animals. To overcome this limitation 

https://github.com/dydals320/ImagingGUI
https://github.com/dydals320/ImagingGUI
https://github.com/dydals320/DaphniaBehAnalysis
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for the regression performance, we used a minority oversampling 
technique, SMOGN (Synthetic Minority Over- Sampling Technique for 
Regression with Gaussian Noise) (Branco et al., 2017). We tested sev-
eral machine- learning models such as LASSO, Elastic Net, Random 
Forest, Gradient Boost, and SVM in the scikit- learn module of py-
thon (Pedregosa et al., 2011). The performance of the models was 
determined with the adjusted R2 and RMSE values. The training and 
testing datasets were split using StratifiedKFold (using fivefold cross- 
validation in this study) to ensure each fold is a good representation 
of the whole data. There were 12,356 total data points (individual tra-
jectories) for the normal behavioral condition and 16,517 data points 
for the stimulus condition in the control group. Missing data were 
replaced by the mean value for a given feature for a given age group.

4.6  |  Statistics and reproducibility

Samples were randomized and treated under the same condition. 
The sample sizes were not predetermined with a statistical method. 
Samples were allocated to groups randomly. Data collection and 
analysis were not performed blindly. No data were excluded from 
the	 analysis.	 Quantification	 and	 statistical	 parameters	 are	 indi-
cated in the figure legends or directly marked in the figure, includ-
ing the statistical method, error bars, n numbers, and p values. We 
applied Student's t test, Mann– Whitney test, and log- rank test to 
determine statistical significance. Specifically, data in Figures 2d,h 
and 6 were not normally distributed (using the D’Agostino&Pearson 
normality test); thus, a Mann– Whitney test was used for the analy-
sis. A Student's t test was used for other normally distributed data 
sets. p values less than 0.05 are considered statistically significant. 
Statistical analyses were performed using Graphpad Prism 9 and 
Python scipy (1.6.0) library. Lifespan distribution fitting was con-
ducted using flexsurv package in R (Jackson, 2016).
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